首页> 外文OA文献 >Evaluation of HMM Training Algorithms for Letter Hand Gesture Recognition
【2h】

Evaluation of HMM Training Algorithms for Letter Hand Gesture Recognition

机译:字母手势识别的HMM训练算法评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper introduces an application using computer vision for letter hand gesture recognition. A digital camera records a video stream of hand gestures. The hand is automatically segmented, the position of the hand centroid is calculated in each frame, and a trajectory of the hand is determined. After smoothing the trajectory, a sequence of angles of motion along the trajectory is calculated and quantized to form a discrete observation sequence. Hidden Markov Models (HMMs) are used to recognize the letters. Baum Welch and Viterbi Path Counting algorithms are applied for training the HMMs. Our system recognizes all 26 letters from A to Z and the database contains 30 example videos of each letter gesture. We achieve an average recognition rate of about 90 percent. A motivation for the development of this system is to provide an alternate text input mechanism for camera enabled handheld devices, such as video mobile phones and PDAs.
机译:本文介绍了一种使用计算机视觉进行字母手势识别的应用程序。数码相机记录手势的视频流。自动分割手,在每个帧中计算手质心的位置,并确定手的轨迹。在平滑轨迹之后,沿着轨迹的运动角度序列被计算并量化以形成离散的观察序列。隐藏的马尔可夫模型(HMM)用于识别字母。 Baum Welch和Viterbi路径计数算法用于训练HMM。我们的系统可以识别从A到Z的所有26个字母,并且数据库包含每个字母手势的30个示例视频。我们的平均识别率约为90%。开发该系统的动机是为具有摄像头的手持设备(例如视频移动电话和PDA)提供替代的文本输入机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号